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Abstract

The development of unsteady mixed convection flow of an incompressible laminar viscous fluid over a vertical cone has been inves-
tigated when the fluid in the external stream is set into motion impulsively, and at the same time the surface temperature is suddenly
changed from its ambient temperature. The problem is formulated in such a way that at t = 0, it reduces to Rayleigh type of equation
and as t ?1, it tends to Falkner–Skan type of equation. The scale of time has been selected such that the traditional infinite region of
integration become finite which significantly reduce the computational time. The coupled non-linear partial differential equations gov-
erning the unsteady mixed convection flow have been solved numerically by using an implicit finite-difference scheme in combination
with the quasi-linearization technique. There is a smooth transition from the initial steady state to the final steady state. The velocity,
temperature, and concentration profiles and their gradients at the surface for various values of the governing parameters are reported in
the present study.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Free convection is caused by the temperature difference
of the fluid at different locations and forced convection is
the flow of heat due to the cause of some external applied
forces. The combination of both of these phenomena is
called the mixed convection. The phenomenon of mixed
convection occurs in many technical and industrial prob-
lems like electronic devices cooled by fans, nuclear reactor
cooled during emergency shutdown, heat exchanger placed
in a low velocity environment, solar central receiver to
wind current etc. The system to be studied in the present
investigation, shown schematically in Fig. 1, is a vertical
cone in a viscous fluid when the axis of the cone is inline
with the flow. If the cone surface and free stream fluid tem-
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perature differ, not only energy will be transferred to the
flow but also density difference will exist. In a gravitational
field these density differences result in an additional force,
buoyancy force, beside viscous force due to the viscous
action. In many practical circumstances of moderate flow
velocities and large wall-fluid temperature differences, the
magnitude of buoyancy force and viscous force are of
comparable order and convective heat transfer process is
considered as mixed convection. Cone shaped bodies
are often encountered in many engineering application
and many heat transfer problems of mixed convection
boundary layer flow over a stationary cone, which occur
in stationary heat exchangers, are extensively used by
chemical and auto-mobile industries. Moreover, convec-
tive heat transfer on a stationary cone has several
important applications such as design of canisters for
nuclear waste disposal, nuclear reactor cooling system,
geothermal reservoirs etc. Laminar boundary layer flows
exhibiting similarity have long played an important role
in exposing the influence of physical, dynamical and
thermal parameters without introducing the complications
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Nomenclature

Cf skin friction coefficient
C species concentration
f dimensionless stream function
F dimensionless velocity along the x-direction
g acceleration due to gravity
GrL, Gr�L Grashof numbers
N ratio of the buoyancy parameters
Nu Nusselt numbers
Pr Prandtl number
ReL Reynold number
Sc Schmidt number
Sh Sherwood number
t time
T temperature
Tw temperature at the wall
u, v tangential and azimuthal velocity components

Greek symbols
a semi vertical angle of the cone
b volumetric coefficient of thermal expansion

b* volumetric coefficient of expansion for concen-
tration

g similarity variable
h dimensionless temperature
k, k* buoyancy parameters
l dynamic viscosity
m kinematic viscosity of the fluid
n transformed coordinate
q density of the fluid
/ dimensionless concentration
w dimensional stream function

Subscripts

i,1, w, e denote the initial conditions, conditions in the
free stream, at the wall and at the edge of the
boundary layer, respectively

n, g denote the partial derivatives w.r.t to these vari-
ables, respectively

x, y denote the partial derivatives w.r.t to these vari-
ables, respectively
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of non-similar solutions and in providing bases for
approximate methods of calculating more complex non-
similar cases. In case when the conditions for similarity
are satisfied, the complex set of partial differential equa-
tions governing the flow transformed to a system of ordin-
ary differential equations which evidently constitute a
considerable mathematical simplification of the problem.
A solution is called self-similar if a system of partial differ-
ential equations can be reduced to a system of ordinary
differential equations. If the similarity transformation are
only able to reduce the number of independent variables,
then the transformed equations are known as semi-similar
and the corresponding solutions are the semi-similar solu-
tions [1].

Early work of Hering and Grosh [2] presents a number
of similarity solutions for cones, with prescribed wall tem-
perature being a power function of the distance from the
apex along the generator. Further investigation of this
problem for low Pr number were made by Hering [3],
and Sparrow and Guinle [4], while for large Pr number
were made by Roy [5]. Later, Hasen and Majumdar [6]
have investigated the steady double diffusive mixed convec-
tion flow along a vertical cone under the combined buoy-
ancy effect of thermal and species diffusion. The local
similarity method has been employed to solve the trans-
formed non-dimensional equations. Subsequently, Kumari
et al. [7] have studied the problem of steady mixed convec-
tion flow along an isothermal vertical cone and the trans-
formed non-dimensional equations of the non-similar
boundary layers are solved by efficient finite-difference
method. Recently, Roy and Anil kumar [1] have obtained
a semi-similar solution of an unsteady mixed convection
flow over a rotating cone in a rotating viscous fluid when
the free stream angular velocity and angular velocity of
the cone vary arbitrarily with time. In many practical
problems, the flow could be unsteady due to the angular
velocity of the spinning body which varies with time or
due to the impulsive change in the velocity of the
body or due to the free stream velocity which varies with
time. The flow and heat transfer development of boundary
layer in an impulsively rotating and translating axi-
symmetric body was considered by Ece [8]. To obtain the
solution for small values of time, Kumari [9] studied the
temporal development of flow and heat transfer over a
wedge with a magnetic field caused by the impulsive
motion of the free stream velocity and sudden change in
the wall temperature. The governing boundary layer
equations were solved numerically by implicit finite-differ-
ence scheme and solutions are valid for all times. Recently,
Seshadri et al. [10] have studied the unsteady mixed convec-
tion in a stagnation flow adjacent to a heated vertical sur-
face where the unsteadiness is caused by the impulsive
motion of the free stream velocity as well as sudden
increase in the wall temperature. The parabolic partial dif-
ferential equation governing the boundary layer flow have
been solved by using an implicit finite-difference scheme
starting from the initial steady state to final steady state.
William and Rhyne [11] describe the boundary layer devel-
opment on a wedge impulsively set into motion and the
method to obtain the transformation is explained in their
study.

The aim of the present study is to investigate the simul-
taneous effects of impulse on an unsteady mixed convection
flow over a vertical cone including the effect of thermal and
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Fig. 1. Physical model and coordinate system.
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mass diffusions. The unsteadiness is caused by the impul-
sive motion of the vertical cone. The problem is formulated
in such a way that at time t = 0, it is governed by Rayleigh
type of equation and as t ?1, it is governed by Falkner–
Skan type of equation. The semi-similar solution of cou-
pled non-linear partial differential equations governing
the mixed convection flow has been obtained numerically
using the quasi-linearization technique in combination with
an implicit finite-difference scheme. The results have been
compared with Seshadri et al. [10] and William and Rhyne
[11], and found in an excellent agreement.
2. Analysis

Consider an unsteady mixed convection flow over a
vertical cone impulsively set into motion. The unsteadiness
caused due to the impulsive motion of the cone. The coor-
dinate system and the physical model are shown in Fig. 1.
The buoyancy forces arise by both the variation in the
temperature and concentration of fluid and the flow is
taken to be axi-symmetric. All the properties of the fluid
are constant except the density variations causing the
buoyancy force term in the momentum equation. Both
the temperature and concentration at the wall vary as a
function of x. The Boussinesq approximation is invoked
for the fluid properties to relate the density change to tem-
perature and concentration changes and to couple in this
way the temperature and concentration field to the flow
field. Under the above assumptions, and imposing the
Mangler’s transformation to [12] reduce the axi-symmetric
problem into a two-dimensional problem, the governing
boundary layer momentum, energy and concentration
equations are

ux þ vy ¼ 0; ð1Þ

ut þ uux þ vuy ¼ ueðueÞx þ muyy þ ½gbðT � T1Þ

þ gbHðC � C1Þ� cos a; ð2Þ

T t þ uT x þ vT y ¼ Pr�1mT yy ; ð3Þ

Ct þ uCx þ vCy ¼ Sc�1mCyy : ð4Þ
The initial conditions are

uðx; y; 0Þ ¼ uiðx; yÞ; vðx; y; 0Þ ¼ viðx; yÞ;

T ðx; y; 0Þ ¼ T iðx; yÞ; Cðx; y; 0Þ ¼ Ciðx; yÞ; ð5Þ
and the boundary conditions are given by

uðx; 0; tÞ ¼ vðx; 0; tÞ ¼ 0; T ðx; 0; tÞ ¼ T w;

Cðx; 0; tÞ ¼ Cw; uðx;1; tÞ ¼ ueðxÞ ¼ u1xm=3;

vðx;1; tÞ ¼ 0; T ðx;1; tÞ ¼ T1; Cðx;1; tÞ ¼ C1:

ð6Þ
Here a is the semi vertical angle of the cone; m is the kine-
matic viscosity of the fluid; q is the density; g is the accel-
eration due to gravity; T is the temperature; C is the
species concentration; b is volumetric coefficient of thermal
expansion; b* is the volumetric coefficient of expansion for
concentration; t is the time; Pr is the Prandtl number; Sc is
the Schmidt number; subscripts x and y denote the partial
derivatives with respect to the corresponding variables and
the subscripts i, 1, w and e denote the initial conditions,
the conditions in the free stream, the conditions at the sur-
face and the conditions at the edge of the boundary layer,
respectively; C1 and T1 are constants.

Applying the following transformations:

g ¼ ue

xnm

� �1
2

y; n ¼ 1� expð�t�Þ; t� ¼ uet
x
¼ u1ðxÞ

m�3
3 t;

wðx; y; tÞ ¼ ðxuemnÞ1=2f ðn; gÞ; ow
oy
¼ u;

ow
ox
¼ �v;

u ¼ uefgðn; gÞ ¼ ueF ðn; gÞ; f gðn; gÞ ¼ F ðn; gÞ;
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hðn; gÞ ¼ T � T1
T w � T1

; T w ¼ T1 þ ðT w0 � T1ÞLðxÞð2m�3Þ=3
;

/ðn; gÞ ¼ C � C1
Cw � C1

; Cw ¼ C1 þ ðCw0 � C1ÞLðxÞð2m�3Þ=3
;

ð7Þ

to Eqs. (1)–(4), we find that Eq. (1) is identically satisfied,
and Eqs. (2)–(4) reduce to

F gg þ fF g n
mþ 3

6

� �
� ð1� nÞ m� 3

6

� �
logð1� nÞ

� �

þ g
2
ð1� nÞF g � nð1� nÞ oF

on
þ m

3
nð1� F 2Þ þ knðhþ N/Þ

¼ n
3
ðm� 3Þð1� nÞ logð1� nÞ F g

of
on
� F

oF
on

� �
; ð8Þ

hgg þ Prf hg
mþ 3

6

� �
n� m� 3

6
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ð1� nÞ logð1� nÞ

� �

þ Pr
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/gg þ Scf /g
mþ 3

6

� �
n� m� 3

6

� �
ð1� nÞ logð1� nÞ

� �

þ Sc
g
2
ð1� nÞ/g � Sc

2m� 3
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¼ Scð1� nÞ logð1� nÞn m� 3
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of
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� F

o/
on

� �

þ Scð1� nÞn o/
on
: ð10Þ

The boundary conditions reduce to

F ðn; 0Þ ¼ 0; hðn; 0Þ ¼ /ðn; 0Þ ¼ 1;

F ðn;1Þ ¼ 1; hðn;1Þ ¼ /ðn;1Þ ¼ 0; ð11Þ
where

GrL ¼
gbðT w0 � T1ÞL3 cos a

m2
;

Gr�L ¼
gb�ðCw0 � C1ÞL3 cos a

m2
; Re ¼ u1L

m
; k ¼ GrL

Re2
L

;

k� ¼ Gr�L
Re2

L

; N ¼ k�

k
;

and

f ðn; gÞ ¼
Z g

0

F ðn; gÞdg:

Here n and g are the transformed coordinates; f is the
dimensionless stream function; F is the dimensionless
velocity along the x-direction; h and / are the temperature
and concentration; ReL is the Reynolds number; GrL and
Gr�L are the Grashof numbers; k and k* are the buoyancy
parameters; N is the ratio of the buoyancy parameters.

Eqs. (8)–(10) for n = 0 and n = 1 reduce to the ordinary
differential equations. For n = 0,they are given by

F gg þ
g
2

F g ¼ 0; ð12Þ

hgg þ Pr
g
2

hg ¼ 0; ð13Þ

/gg þ Sc
g
2

/g ¼ 0: ð14Þ

Similarly, for n = 1 Eqs. (8)–(10) can be expressed as

F gg þ
mþ 3

6
fF g þ

m
3
ð1� F 2Þ þ kðhþ N/Þ ¼ 0; ð15Þ

hgg þ Pr
mþ 3

6
f hg � Pr

2m� 3

3
F h ¼ 0; ð16Þ

/gg þ Sc
mþ 3

6
f /g � Sc

2m� 3

3
F / ¼ 0: ð17Þ

The boundary conditions for Eqs. (12)–(14) or Eqs. (15)–
(17) are

F ð0Þ ¼ 0; hð0Þ ¼ /ð0Þ ¼ 1; F ð1Þ ¼ 1;

hð1Þ ¼ /ð1Þ ¼ 0: ð18Þ

The local skin friction coefficient is given by

Cf ¼
2 l ou

oy

h i
y¼0

ðueÞ2q
¼ 2n�1=2Re�1=2

L F gðn; 0Þ:

Thus

Re1=2
L Cf ¼ 2n�1=2F gðn; 0Þ:

The local Nusselt and Sherwood numbers are expressed as

Re�1=2
L Nu ¼ �n�1=2hgðn; 0Þ;

Re�1=2
L Sh ¼ �n�1=2/gðn; 0Þ;

where

Nu ¼ �
x oT

oy

h i
y¼0

T w � T1
and Sh ¼ �

x oC
oy

h i
y¼0

Cw � C1
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3. Analytic solution

The solution of the linear equations (12)–(14) under con-
ditions (18) can be expressed as

f ðgÞ ¼ g erfðg=2Þ � ðpÞ�
1
2½1� expð�g2=4Þ�; ð19Þ

F ¼ ðpÞ�
1
2erfðg=2Þ; ð20Þ

hðgÞ ¼ 1� erf Pr1=2 g
2

� �
¼ erfc Pr1=2 g

2

� �
; ð21Þ

/ðgÞ ¼ 1� erf Sc1=2 g
2

� �
¼ erfc Sc1=2 g

2

� �
; ð22Þ

fggð0Þ ¼ ðpÞ�1=2
; hgð0Þ ¼ �

Pr
p

� �1=2

; /gð0Þ ¼ �
Sc
p

� �1=2

:

ð23Þ

It may be noted that Eqs. (12)–(14) for n = 0 and (15)–
(17) for n = 1 under boundary conditions (18) are identical
to Seshadri et al. [11].
4. Method of solution

The non-linear coupled partial differential equations
(8)–(10) under the boundary conditions (11) and initial
conditions (19)–(22) has been solved numerically using an
implicit finite-difference scheme in combination with the
quasi-linearization technique. An iterative sequence of lin-
ear equations are carefully constructed to approximate the
non-linear equations (8)–(10) for achieving quadratic
convergence. Applying quasi-linearization technique, the
non-linear coupled partial differential equations (8)–(10)
are replaced by the following sequence of linear partial dif-
ferential equations:

F iþ1
gg þ X i

1F iþ1
g þ X i

2F iþ1 þ X i
3F iþ1

n þ X i
4h

iþ1 þ X i
5/

iþ1 ¼ X i
6;

ð24Þ
hiþ1

gg þ Y i
1h

iþ1
g þ Y i

2h
iþ1 þ Y i

3h
iþ1
n þ Y i

4F iþ1 þ Y i
5/

iþ1 ¼ Y i
6;

ð25Þ
/iþ1

gg þ Zi
1/

iþ1
g þ Zi

2/
iþ1 þ Zi

3/
iþ1
n þ Zi

4F iþ1 þ Zi
5h

iþ1 ¼ Zi
6:

ð26Þ

The coefficient function with iterative index i are known
and the functions with iterative index i + 1 are to be deter-
mined. The boundary conditions are given by

F iþ1 ¼ 0; hiþ1 ¼ /iþ1 ¼ 1 at g ¼ 0;

F iþ1 ¼ 1 hiþ1 ¼ /iþ1 ¼ 0; at g ¼ g1; ð27Þ

where g1 is the edge of the boundary layer. The coefficients
in Eqs. (24)–(26) are given by

X 1 ¼ f
mþ 3

6
n� m� 3

6
ð1� nÞ logð1� nÞ

� �

þ g
2
ð1� nÞ � m� 3

3
nð1� nÞ logð1� nÞ of

on
;

X 2 ¼ �
2m
3

nF þ m� 3

3
nð1� nÞ logð1� nÞ oF

on
;

X 3 ¼ �nð1� nÞ þ m� 3
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nð1� nÞ logð1� nÞF ;

X 4 ¼ kn;

X 5 ¼ knN ;

X 6 ¼ �
m
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3
nð1� nÞ logð1� nÞF oF

on
;

Y 1 ¼ Pr f
mþ 3
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nð1� nÞ logð1� nÞF � nð1� nÞ
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on

� �
;

Y 5 ¼ 0;

Y 6 ¼ Pr � 2m� 3

3
nF hþ m� 3

3
nð1� nÞ logð1� nÞF oh

on

� �
;

Z1 ¼ Sc f
mþ 3

6

� �
n� m� 3

6
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ð1� nÞ logð1� nÞ
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þ g
2
ð1� nÞ � m� 3
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nð1� nÞ logð1� nÞ of

on

�
;

Z2 ¼ �
2m� 3

3
nFSc;

Z3 ¼ Sc
m� 3

3
nð1� nÞ logð1� nÞF � nð1� nÞ

� �
;

Z4 ¼ Sc � 2m� 3

3
n/þ m� 3

3
nð1� nÞ logð1� nÞ o/

on

� �
;

Z5 ¼ 0;

Z6 ¼ Sc � 2m� 3

3
nF /þ m� 3

3
nð1� nÞ logð1� nÞF o/

on

� �
:

Since the method is described for ordinary differential
equations by Inouye and Tate [13] and also explained for
partial differential equations in a recent article by Roy and
Saikrishnan [14], its detailed description is not provided
for the sake of brevity. At each iteration step, the sequence
of linear partial differential equations (24)–(26) were
expressed in difference form using central difference scheme
in the g-direction and backward difference scheme in n-direc-
tion. In each iteration step, these equations were then
reduced to a system of linear algebraic equations with a
block tri-diagonal matrix, which is solved by Varga’s algo-
rithm [15]. To ensure the convergence of the numerical solu-
tion to the exact solution, the step sizes Dg and Dn have been
optimized and the results presented here are independent of
the step sizes at least up to the fourth decimal place. The step
sizes of Dg and Dn have been taken as 0.01 and 0.01, respec-
tively. A convergence criterion based on the relative
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difference between the current and previous value is
employed. When the difference reaches 10�4, the solution
is assumed to have converged and the iterative process is
terminated.

5. Result and discussion

Computations have been carried out for the various
values of Pr (0.7 6 Pr 6 10.0), Sc (0.22 6 Sc 6 2.57), k
(�10.0 6 k 6 10.0) and N (�1.0 6 N 6 1.0). In all numeri-
cal computations, the value of m is taken as 4 and the edge
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The effects of buoyancy parameter k and Prandtl num-
ber (Pr) on velocity and temperature profiles (F,h) are dis-
played in Figs. 4 and 5. The variations in the concentration
profiles due to the effects of k and Pr are within 5% and the
profiles are not displayed here for the sake of brevity. In
buoyancy aiding flow (k > 0), the buoyancy force shows
the significant overshoot in the velocity profiles near the
wall for lower Prandtl number fluid but for higher Prandtl
0
–0.5

0.5

1.5

F

5

–1

 –2.37

–8
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Fig. 4. Effects of Pr and k on the velocity profi
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number fluid the velocity overshoot is not much significant
as can be observed in Fig. 4. The magnitude of the over-
shoot increases with the buoyancy parameter k (k > 0)
but decreases as the Prandtl number increases. The reason
is that the buoyancy force (k) effect is more in low Prandtl
number fluid (air, Pr = 0.7) due to the low viscosity of the
fluid, which increases the velocity within the boundary
layer as the assisting buoyancy force acts like a favorable
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pressure gradient. Hence the velocity overshoot occurs and
for higher Prandtl number fluids the overshoot is not
much significant because higher Prandtl number (water,
Pr = 7.0), implies more viscous fluid which makes it less
sensitive to the buoyancy parameter (k). It is interesting
to notice in Fig. 4 that at n = 0.5, for buoyancy opposing
flow i.e. for negative values of buoyancy parameter k
(k < 0), the reverse flow starts at k ’ �2.37 for Pr = 0.7
(air) and at k ’ �3.43 for Pr = 7.0 (water). The buoyancy
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Fig. 6. Effects of Pr and k on the skin friction coe
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Fig. 7. Effect of N on the velocity profile when
opposing force reduces the velocity near the wall subse-
quently as the buoyancy parameter k decreases further
and the fluid flows backward near the wall in a small region
as can be seen in Fig. 4 for k = �5 when Pr = 0.7 and for
k = �8 when Pr = 7.0. The effect of k is comparatively less
in temperature profile as shown in Fig. 5. Moreover, Fig. 5
shows that the effect of Prandtl number (Pr) results into the
thinner thermal boundary layer as the higher Prandtl num-
ber (water, Pr = 7.0) has a lower thermal conductivity.
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Also, the effects of k and Prandtl number Pr on the skin
friction coefficient ðCfRe1=2

L Þ is shown in Fig. 6, it shows
the oscillating trend in the skin friction coefficient for
higher k near the stagnation region and reach the steady
state as n(t* ?1) = 1. Physically these oscillations are
due to the surplus convection of momentum within the
boundary layer.
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Fig. 8. Effects of N and k on the surface shear stress
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Fig. 9. Effects of Pr and Sc on the temperature
Figs. 7 and 8 show the effect of various N (ratio of con-
centration buoyancy force to thermal buoyancy force
parameters) on the velocity profiles and surface shear stress
parameters (F,Fg(n, 0)). The results presented in Fig. 7 indi-
cate that for a fixed k = 5, the velocity overshoot is
observed for positive values of N and the magnitude of
the overshoot increases further with the increase of N.
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The physical reason is that the assisting buoyancy force acts
like a favorable pressure gradient which accelerate the fluid
for low Prandtl number (air, Pr = 0.7) causing the velocity
overshoot within the boundary layer. Due to the increase in
the values of k and N, the surface shear stress parameter
(Fg(n, 0)) increases at every n locations and also for the fixed
values of the k and N, surface shear stress (Fg(n, 0)) increases
with n which can be seen in Fig. 8. At n = 0 momentum
equation is independent of the k and N so the results are
same for all k and N which can be seen in Fig. 8 that all
the lines are converging to a point at n = 0. The effects of
k and N on the temperature and concentration profiles are
very small because the physical parameter k and N appear
only in the momentum equation. Hence, the effects of k
and N on those quantities are not displayed here.

Figs. 9 and 10 display the effects of Prandtl number (Pr)
and Schmidt numbers (Sc) on the temperature and concen-
tration profiles (h,/) for k = 10 and N = 0.5 at n = 0.5. It is
noticed that the increase in Pr and Sc number causes a
reduction in the thermal boundary layer thickness and con-
centration boundary layer thickness, respectively. Conse-
quently, the heat transfer at wall increases with Pr and
the concentration gradient at wall increases with Sc. It
may be noted that for steady state case i.e. at n = 1, similar
observation have been made by Khair and Bejan [16] for a
particular case of two-dimensional natural convection flow.
Further, it may be noted that the effect of Pr on concentra-
tion gradient at wall and the effect of Sc on heat transfer
rate at wall are comparatively small as can be seen in Figs.
9 and 10. The reason for this trend is that the temperature
equation is independent to the Sc number and concentra-
tion equation is independent to the Prandtl number Pr.
6. Conclusions

Unsteady mixed convection flow over a vertical cone
due to impulsive motion under the combined effects of
thermal and mass diffusion has been studied numerically
to obtain semi-similar solutions. It is observed that the
buoyancy force produces significant velocity overshoot
near the wall within the boundary layer for low Prandtl
number fluid (air, Pr = 0.7) but for high Prandtl number
fluid (water, Pr = 7.0) the velocity overshot is not much
significant. The magnitude of the overshoot increases with
the buoyancy parameter k and the positive ratio of buoy-
ancy parameter N. Further, the surface shear stress, surface
heat transfer rate and concentration gradient at wall
increase with the increase of k. The numerical results illus-
trate that the surface heat transfer rate can be reduced by
using low Prandtl number fluid. It is found that there is a
smooth transition from the initial state to the final steady
state and the steady state results ( as t ?1) are corre-
sponding to the results n = 1.
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